242 research outputs found

    Symmetry-breaking instability in a prototypical driven granular gas

    Full text link
    Symmetry-breaking instability of a laterally uniform granular cluster (strip state) in a prototypical driven granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding inelastically with each other and driven, at zero gravity, by a "thermal" wall. The limit of nearly elastic particle collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is employed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of the box. Marginal stability analysis predicts a spontaneous symmetry breaking instability of the strip state, similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In this regime, the density perturbation is exponentially localized at the elastic wall opposite to the thermal wall. The short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute limit. The physics of the symmetry-breaking instability is discussed.Comment: 11 pages, 14 figure

    Convective Motion in a Vibrated Granular Layer

    Full text link
    Experimental results are presented for a vertically shaken granular layer. In the range of accelerations explored, the layer develops a convective motion in the form of one or more rolls. The velocity of the grains near the wall has been measured. It grows linearly with the acceleration, then the growing rate slows down. A rescaling with the amplitude of the wall velocity and the height of the granular layer makes all data collapse in a single curve. This can provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation

    Can Short-Range Interactions Mediate a Bose Metal Phase in 2D?

    Full text link
    We show here based on a 1-loop scaling analysis that short-range interactions are strongly irrelevant perturbations near the insulator-superconductor (IST) quantum critical point. The lack of any proof that short-range interactions mediate physics which is present only in strong coupling leads us to conclude that short-range interactions are strictly irrelevant near the IST quantum critical point. Hence, we argue that no new physics, such as the formation of a uniform Bose metal phase can arise from an interplay between on-site and nearest-neighbour interactions.Comment: 3 pages, 1 .eps file. SUbmitted to Phys. Rev.

    Empirical Validation of MoDe4SLA; Approach for Managing Service Compositions

    Get PDF
    For companies managing complex Web service compositions, challenges arise which go far beyond simple bilateral contract monitoring. For example, it is not only important to determine whether or not a component (i.e., Web service) in a composition is performing properly, but also to understand what the impact of its performance is on the overall service composition. To tackle this challenge, in previous work we developed MoDe4SLA which allows managing and monitoring dependencies between services in a composition. This paper empirically validates MoDe4SLA through an extensive and interactive experiment among 34 participants

    Destruction of diagonal and off-diagonal long range order by disorder in two-dimensional hard core boson systems

    Full text link
    We use quantum Monte Carlo simulations to study the effect of disorder, in the form of a disordered chemical potential, on the phase diagram of the hard core bosonic Hubbard model in two dimensions. We find numerical evidence that in two dimensions, no matter how weak the disorder, it will always destroy the long range density wave order (checkerboard solid) present at half filling and strong nearest neighbor repulsion and replace it with a bose glass phase. We study the properties of this glassy phase including the superfluid density, energy gaps and the full Green's function. We also study the possibility of other localized phases at weak nearest neighbor repulsion, i.e. Anderson localization. We find that such a phase does not truly exist: The disorder must exceed a threshold before the bosons (at weak nn repulsion) are localized. The phase diagram for hard core bosons with disorder cannot be obtained easily from the soft core phase diagram discussed in the literature.Comment: 7 pages, 10 eps figures include

    Slow relaxations and history dependence of the transport properties of layered superconductors

    Full text link
    We study numerically the time evolution of the transport properties of layered superconductors after different preparations. We show that, in accordance with recent experiments in BSCCO performed in the second peak region of the phase diagram (Portier et al, 2001), the relaxation strongly depends on the initial conditions and is extremely slow. We investigate the dependence on the pinning center density and the perturbation applied. We compare the measurements to recent findings in tapped granular matter and we interpret our results with a rather simple picture.Comment: 4 pages, 4 fig

    On the existence of a Bose Metal at T=0

    Full text link
    This paper aims to justify, at a microscopic level, the existence of a two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at T=0. To this end, we consider the physics of quantum phase fluctuations in (granular) superconductors in the absence of disorder and emphasise the role of two order parameters in the problem, viz. phase order and charge order. We focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a 2-d array of Josephson junctions. We find that the algebra of phase fluctuations is that of the Euclidean group E2E_{2} in this limit, and show that the model is equivalent to two coupled XY models in (2+1)-d, one corresponding to the phase degrees of freedom, and the other the charge degrees of freedom. The Bose metal, then, is the phase in which both these degrees of freedom are disordered(as a result of quantum frustration). We analyse the model in terms of its topological excitations and suggest that there is a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We find a remarkable consistency of this scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure

    Baxterization, dynamical systems, and the symmetries of integrability

    Full text link
    We resolve the `baxterization' problem with the help of the automorphism group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations. This infinite group of symmetries is realized as a non-linear (birational) Coxeter group acting on matrices, and exists as such, {\em beyond the narrow context of strict integrability}. It yields among other things an unexpected elliptic parametrization of the non-integrable sixteen-vertex model. It provides us with a class of discrete dynamical systems, and we address some related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to [email protected] and give your postal mail addres
    • …
    corecore